Parametric and Uncertainty Computations with Tensor Product Representations

نویسندگان

  • Hermann G. Matthies
  • Alexander Litvinenko
  • Oliver Pajonk
  • Bojana V. Rosic
  • Elmar Zander
چکیده

Computational uncertainty quantification in a probabilistic setting is a special case of a parametric problem. Parameter dependent state vectors lead via association to a linear operator to analogues of covariance, its spectral decomposition, and the associated Karhunen-Loève expansion. From this one obtains a generalised tensor representation. The parameter in question may be a tuple of numbers, a function, a stochastic process, or a random tensor field. The tensor factorisation may be cascaded, leading to tensors of higher degree. When carried on a discretised level, such factorisations in the form of low-rank approximations lead to very sparse representations of the high dimensional quantities involved. Updating of uncertainty for new information is an important part of uncertainty quantification. Formulated in terms or random variables instead of measures, the Bayesian update is a projection and allows the use of the tensor factorisations also in this case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$

‎We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$‎. ‎We specialize the indeterminates used in defining these representations to non zero complex numbers‎. ‎We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$‎. ‎We then determine necessary and sufficient conditions that guarantee the irreducibility of th...

متن کامل

On tensor product $L$-functions and Langlands functoriality

‎In the spirit of the Langlands proposal on  Beyond Endoscopy ‎we discuss the explicit relation between the Langlands functorial transfers and automorphic $L$-functions‎. ‎It is well-known that the poles of the $L$-functions have deep impact to the Langlands functoriality‎. ‎Our discussion also‎ ‎includes the meaning of the central value of the tensor product $L$-functions in terms of the Langl...

متن کامل

Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains

A tensor-based method is proposed for the solution of partial differential equations defined on uncertain parameterized domains. It provides an accurate solution which is explicit with respect to parameters defining the shape of the domain, thus allowing efficient a posteriori probabilistic or parametric analyses. In the proposed method, a fictitious domain approach is first adopted for the ref...

متن کامل

Special Session 53: Greedy Algorithms and Tensor Product Representations for High-Dimensional Problems

The curse of dimensionality remains a major obstacle to numerical simulations in various fields such as quantum chemistry, molecular dynamics or uncertainty quantification for instance. Tensor product representations of multivariate functions are a promising way to avoid this di culty. Besides, greedy algorithms have been used in many contexts in order to provide satisfactory, but not usually o...

متن کامل

Tensor-product approach to global time-space-parametric discretization of chemical master equation

We study the application of the novel tensor formats (TT, QTT, QTTTucker) to the solution of d-dimensional chemical master equations, applied mostly to gene regulating networks (signaling cascades, toggle switches, phage-λ). For some important cases, e.g. signaling cascade models, we prove good separability properties of the system operator. The time is treated as an additional variable, with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011